HomeNewsInfinix launches 3D Vapour Cloud Chamber LiquidCooling Technology

Infinix launches 3D Vapour Cloud Chamber LiquidCooling Technology

Infinix Vapour Cloud Chamber technology has been certified by the China National Intellectual Property Administration.

Infinix has officially launched its 3D Vapour Cloud Chamber Liquid Cooling Technology. Using innovative design on the dimensionality of VC shape for the first time designers have achieved an increase in the chamber volume which significantly improves heat dissipation resulting in better performance.

This creative solution fixes some issues caused by high temperatures for high-integration and high-power smartphones, such as reduction, frame rate drops, and frozen screens. This new Infinix Vapour Cloud Chamber technology has been certified by the China National Intellectual Property Administration.

Infinix 3D Vapour Cloud Chamber Technology

When heat enters the VC, water in the evaporator is vaporized into steam, which removes excess heat. Hot steam then flows into the condenser becoming a liquid, which flows back to the evaporator through the internal wick structure that forms a hot and cold circulation system with the coexistence of water and steam.

When compared with traditional VC design, the 3D Vapor Cloud Chamber Liquid Cooling Technology come a long way forward. Bumps were added to one side of the evaporator, increasing chamber volume and water storage capacity along with thermal flux. Water injection volume and Q max values increased by 20% when compared with conventional VC resulting in massive improvements overall. 

Reducing the thermal resistance media of the heating source is realized by adjusting the structure of the front housing to form a bump, which enables the 3D Vapor Cloud Chamber to almost directly contact the chip. This significantly reduces thermal resistance from shield to Vapor Chamber increasing thermal conductivity rate, performance, and heat dissipation. In comparison to traditional 2D designs, the new 3D VCC reduces the temperature by about three degrees, and the total heat dissipation performance is increased by about 12.5%.

ALSO READ: Infinix InBook X1 Neo launched in India with 14-inch display

The Challenges of Creating Perfection

For Infinix to master heat dissipation in the new 3D VCC design, structural strength needed to be vastly improved upon previous designs. After numerous tests and improvements, Infinix’s R&D team designed the 3D internal structure into a matrix support column, balancing flatness and internal chamber volume. 

The second major challenge was to maintain the integrity of the wick structure within the 3D structure. Traditional VC wick structures are flat and folds can easily occur within the 3D Cloud transition area, causing a potential chamber blockage. Utilizing a complicated capillary structure density analysis and advanced welding technology, Infinix’s R&D team were able to ensure the integrity of the wick structure, greatly improving performance. 

Front housing adaption was also taken into account. In order to reduce the thermal resistance medium, Infinix’s R&D team repeatedly evaluated the position of the front housing opening and the strength of its alloy material, resulting in front housing adaptation. Together, these key components make up Infinix’s self developed 3D Vapor Cloud Chamber Liquid Cooling Technology. 

With this technology embedded into Infinix smartphones, users can enjoy the benefit of superior performance when their device is under heavy load, allowing them to play games harder and faster, live-stream for longer and reap the rewards if a cooler, smoother running high performance smartphone. 

For the latest tech news and reviews, follow us on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.



Please enter your comment!
Please enter your name here

Latest News

Crypto News